FLAVONOIDS OF Geranium pusillum

K. B. Kobakhidze and M. D. Alaniya

UDC 547.972

In continuation of a study of the flavonoids of the epigeal part of *Geranium pusillum* L. (Geraniaceae) [1], air-dried raw material that was collected during flowering was exhaustively extracted with ethanol (70%). The alcohol extract was evaporated in vacuum. The moist solid was treated with CHCl₃ to remove lipophilic substances. Flavonoids were extracted from the purified moist solid by ethylacetate (average 2% yield).

The ethylacetate fraction was chromatographed over a polyamide column (eluent ethanol—water in various proportions). Repeated rechromatography of the separate fractions gave flavonoid-like **1-6**. Bryant cyanidin reaction [2] established that two of these were aglycones whereas the others were glycosides.

The isolated flavonoids were identified using UV and IR spectra and chemical transformations compared with authentic samples.

Quercetin (1) (3,5,7,3',4'-pentahydroxyflavone), yellow crystals, $C_{15}H_{10}O_7$, mp 310-312°C, R_f 0.36 (BAW, 4:1:2), 0.03 (15% CH₃COOH), UV spectrum (MeOH, λ_{max} , nm): 255, 364 sh, 370. The IR spectrum contains absorption bands for hydroxyl (3385-3300 cm⁻¹), γ -pyrone carbonyl (1660 cm⁻¹), and aromatic C=C (1565, 1516 cm⁻¹).

Acetylation of **1** by acetic anhydride in pyridine gave the pentaacetate with mp 196-198°C. Alkali fusion with KOH gave fluoroglucinol and protocatechuic acid [3, 4].

Kaempferol (2) (3,5,7,4'-tetrahydroxyflavone), yellow needles, $C_{15}H_{10}O_6$, mp 276-278°C, R_f 0.88 (BAW, 4:1:2), 0.05 (15% CH₃COOH), UV spectrum (EtOH, λ_{max} , nm): 265, 370. The IR spectrum contains absorption bands for hydroxyl (3400, 3300 cm⁻¹), γ-pyrone carbonyl (1650 cm⁻¹), and aromatic C=C (1580, 1540 cm⁻¹).

Acetylation of **2** by acetic anhydride in pyridine provided the tetraacetate with mp 184-186°C. Alkali fusion with KOH gives fluoroglucinol and *p*-hydroxybenzoic acid [4].

Hyperin (3) (quercetin-3-O- β -D-galactoside), light yellow needles, C₂₁H₂₀O₁₂, mp 236-238°C, [α]_D²⁰ -59.0° (c 0.1, CH₃OH), R_f 0.54 (BAW, 4:1:2), 0.36 (15% CH₃COOH), UV spectrum (EtOH, λ_{max} , nm): 259, 360. Acid hydrolysis gave quercetin and D-galactose [4, 5].

Trifolin (4) (kaempferol-3-O-β-D-galactoside), yellow crystals, $C_{21}H_{20}O_{11}$, mp 259-260°C, $[\alpha]_D^{20}$ -35.0°C (c 0.1, C_2H_5 OH), R_f 0.78 (BAW, 4:1:2), 0.24 (15% CH₃COOH), UV spectrum (MeOH, λ_{max} , nm): 267, 354. Acid hydrolysis gave kaempferol and D-galactose [4, 6].

Avicularin (**5**) (quercetin-3-O-α-L-arabofuranoside), light yellow needles, $C_{20}H_{18}O_{11}$, mp 208-210°C, $[\alpha]_D^{20}$ -159°C (*c* 0.1, C_2H_5OH), R_f 0.65 (BAW 4:1:2), 0.28 (15% CH₃COOH), UV spectrum (EtOH, λ_{max} , nm): 260, 360.

Acid hydrolysis gave quercetin and L-arabinose. Acetylation gave an acetyl derivative with mp 184-185°C. Mixing a sample of the acetyl derivative and an authentic sample of acetylated avicularin did not depress the melting point [4, 7].

Compound 6, yellow crystals, mp 205-209°C, R_f 0.46 (BAW, 4:1:2), UV spectrum (MeOH, λ_{max} , nm): 270, 350. Acid hydrolysis gave kaempferol, D-xylose, and D-galactose. The yield of aglycone was 46%. This indicates that the flavonoid is a bioside. The structure of this flavonoid is under investigation.

REFERENCES

- 1. K. B. Kobakhidze, M. L. Alaniya, and J. N. Aneli, Khim. Prir. Soedin., 803 (1999).
- 2. E. F. Bryant, J. Am. Pharm. Assoc., 39, 480 (1950).

I. G. Kutateladze Institute of Pharmacochemistry, Academy of Sciences of Georgia. Translated from Khimiya Prirodnykh Soedinenii, No. 2, p. 162, March-April, 2002. Original article submitted April 8, 2002.

- 3. M. S. Luk'yanchikov and A. L. Kazakov, Khim. Prir. Soedin., 251 (1982).
- 4. L. K. Klyshev, V. A. Bandyukova, and L. S. Alyukina, *Plant Flavonoids* [in Russian], Nauka, Alma-Ata (1978).
- 5. T. A. Geissman, *The Chemistry of Flavonoid Compounds*, Pergamon Press, Oxford (1962), p. 336.
- 6. M. D. Alaniya, Author's Abstract of a Candidate Dissertation in Pharmaceutical Sciences, Khar'kov (1974).
- 7. E. T. Oganesyan, Rastit. Resur., 6, No. 2, 232 (1970).